3.1829 \(\int \frac {\sqrt {1-2 x} (2+3 x)^3}{3+5 x} \, dx\)

Optimal. Leaf size=82 \[ -\frac {27}{140} (1-2 x)^{7/2}+\frac {162}{125} (1-2 x)^{5/2}-\frac {1299}{500} (1-2 x)^{3/2}+\frac {2}{625} \sqrt {1-2 x}-\frac {2}{625} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

[Out]

-1299/500*(1-2*x)^(3/2)+162/125*(1-2*x)^(5/2)-27/140*(1-2*x)^(7/2)-2/3125*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))
*55^(1/2)+2/625*(1-2*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {88, 50, 63, 206} \[ -\frac {27}{140} (1-2 x)^{7/2}+\frac {162}{125} (1-2 x)^{5/2}-\frac {1299}{500} (1-2 x)^{3/2}+\frac {2}{625} \sqrt {1-2 x}-\frac {2}{625} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(2 + 3*x)^3)/(3 + 5*x),x]

[Out]

(2*Sqrt[1 - 2*x])/625 - (1299*(1 - 2*x)^(3/2))/500 + (162*(1 - 2*x)^(5/2))/125 - (27*(1 - 2*x)^(7/2))/140 - (2
*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/625

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x} (2+3 x)^3}{3+5 x} \, dx &=\int \left (\frac {3897}{500} \sqrt {1-2 x}-\frac {162}{25} (1-2 x)^{3/2}+\frac {27}{20} (1-2 x)^{5/2}+\frac {\sqrt {1-2 x}}{125 (3+5 x)}\right ) \, dx\\ &=-\frac {1299}{500} (1-2 x)^{3/2}+\frac {162}{125} (1-2 x)^{5/2}-\frac {27}{140} (1-2 x)^{7/2}+\frac {1}{125} \int \frac {\sqrt {1-2 x}}{3+5 x} \, dx\\ &=\frac {2}{625} \sqrt {1-2 x}-\frac {1299}{500} (1-2 x)^{3/2}+\frac {162}{125} (1-2 x)^{5/2}-\frac {27}{140} (1-2 x)^{7/2}+\frac {11}{625} \int \frac {1}{\sqrt {1-2 x} (3+5 x)} \, dx\\ &=\frac {2}{625} \sqrt {1-2 x}-\frac {1299}{500} (1-2 x)^{3/2}+\frac {162}{125} (1-2 x)^{5/2}-\frac {27}{140} (1-2 x)^{7/2}-\frac {11}{625} \operatorname {Subst}\left (\int \frac {1}{\frac {11}{2}-\frac {5 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=\frac {2}{625} \sqrt {1-2 x}-\frac {1299}{500} (1-2 x)^{3/2}+\frac {162}{125} (1-2 x)^{5/2}-\frac {27}{140} (1-2 x)^{7/2}-\frac {2}{625} \sqrt {\frac {11}{5}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 56, normalized size = 0.68 \[ \frac {5 \sqrt {1-2 x} \left (6750 x^3+12555 x^2+5115 x-6526\right )-14 \sqrt {55} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{21875} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(2 + 3*x)^3)/(3 + 5*x),x]

[Out]

(5*Sqrt[1 - 2*x]*(-6526 + 5115*x + 12555*x^2 + 6750*x^3) - 14*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/2187
5

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 61, normalized size = 0.74 \[ \frac {1}{3125} \, \sqrt {11} \sqrt {5} \log \left (\frac {\sqrt {11} \sqrt {5} \sqrt {-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) + \frac {1}{4375} \, {\left (6750 \, x^{3} + 12555 \, x^{2} + 5115 \, x - 6526\right )} \sqrt {-2 \, x + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3*(1-2*x)^(1/2)/(3+5*x),x, algorithm="fricas")

[Out]

1/3125*sqrt(11)*sqrt(5)*log((sqrt(11)*sqrt(5)*sqrt(-2*x + 1) + 5*x - 8)/(5*x + 3)) + 1/4375*(6750*x^3 + 12555*
x^2 + 5115*x - 6526)*sqrt(-2*x + 1)

________________________________________________________________________________________

giac [A]  time = 1.21, size = 90, normalized size = 1.10 \[ \frac {27}{140} \, {\left (2 \, x - 1\right )}^{3} \sqrt {-2 \, x + 1} + \frac {162}{125} \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} - \frac {1299}{500} \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + \frac {1}{3125} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {2}{625} \, \sqrt {-2 \, x + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3*(1-2*x)^(1/2)/(3+5*x),x, algorithm="giac")

[Out]

27/140*(2*x - 1)^3*sqrt(-2*x + 1) + 162/125*(2*x - 1)^2*sqrt(-2*x + 1) - 1299/500*(-2*x + 1)^(3/2) + 1/3125*sq
rt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 2/625*sqrt(-2*x + 1)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 56, normalized size = 0.68 \[ -\frac {2 \sqrt {55}\, \arctanh \left (\frac {\sqrt {55}\, \sqrt {-2 x +1}}{11}\right )}{3125}-\frac {1299 \left (-2 x +1\right )^{\frac {3}{2}}}{500}+\frac {162 \left (-2 x +1\right )^{\frac {5}{2}}}{125}-\frac {27 \left (-2 x +1\right )^{\frac {7}{2}}}{140}+\frac {2 \sqrt {-2 x +1}}{625} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+2)^3*(-2*x+1)^(1/2)/(5*x+3),x)

[Out]

-1299/500*(-2*x+1)^(3/2)+162/125*(-2*x+1)^(5/2)-27/140*(-2*x+1)^(7/2)-2/3125*arctanh(1/11*55^(1/2)*(-2*x+1)^(1
/2))*55^(1/2)+2/625*(-2*x+1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.13, size = 73, normalized size = 0.89 \[ -\frac {27}{140} \, {\left (-2 \, x + 1\right )}^{\frac {7}{2}} + \frac {162}{125} \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} - \frac {1299}{500} \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + \frac {1}{3125} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) + \frac {2}{625} \, \sqrt {-2 \, x + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3*(1-2*x)^(1/2)/(3+5*x),x, algorithm="maxima")

[Out]

-27/140*(-2*x + 1)^(7/2) + 162/125*(-2*x + 1)^(5/2) - 1299/500*(-2*x + 1)^(3/2) + 1/3125*sqrt(55)*log(-(sqrt(5
5) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 2/625*sqrt(-2*x + 1)

________________________________________________________________________________________

mupad [B]  time = 1.16, size = 57, normalized size = 0.70 \[ \frac {2\,\sqrt {1-2\,x}}{625}-\frac {1299\,{\left (1-2\,x\right )}^{3/2}}{500}+\frac {162\,{\left (1-2\,x\right )}^{5/2}}{125}-\frac {27\,{\left (1-2\,x\right )}^{7/2}}{140}+\frac {\sqrt {55}\,\mathrm {atan}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}\,1{}\mathrm {i}}{11}\right )\,2{}\mathrm {i}}{3125} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(1/2)*(3*x + 2)^3)/(5*x + 3),x)

[Out]

(55^(1/2)*atan((55^(1/2)*(1 - 2*x)^(1/2)*1i)/11)*2i)/3125 + (2*(1 - 2*x)^(1/2))/625 - (1299*(1 - 2*x)^(3/2))/5
00 + (162*(1 - 2*x)^(5/2))/125 - (27*(1 - 2*x)^(7/2))/140

________________________________________________________________________________________

sympy [A]  time = 7.79, size = 114, normalized size = 1.39 \[ - \frac {27 \left (1 - 2 x\right )^{\frac {7}{2}}}{140} + \frac {162 \left (1 - 2 x\right )^{\frac {5}{2}}}{125} - \frac {1299 \left (1 - 2 x\right )^{\frac {3}{2}}}{500} + \frac {2 \sqrt {1 - 2 x}}{625} + \frac {22 \left (\begin {cases} - \frac {\sqrt {55} \operatorname {acoth}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: 2 x - 1 < - \frac {11}{5} \\- \frac {\sqrt {55} \operatorname {atanh}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: 2 x - 1 > - \frac {11}{5} \end {cases}\right )}{625} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**3*(1-2*x)**(1/2)/(3+5*x),x)

[Out]

-27*(1 - 2*x)**(7/2)/140 + 162*(1 - 2*x)**(5/2)/125 - 1299*(1 - 2*x)**(3/2)/500 + 2*sqrt(1 - 2*x)/625 + 22*Pie
cewise((-sqrt(55)*acoth(sqrt(55)*sqrt(1 - 2*x)/11)/55, 2*x - 1 < -11/5), (-sqrt(55)*atanh(sqrt(55)*sqrt(1 - 2*
x)/11)/55, 2*x - 1 > -11/5))/625

________________________________________________________________________________________